Design, Synthesis and Biological Evaluation of 6-(2,6-Dichloro-3,5-dimethoxyphenyl)-4-substituted-1H-indazoles as Potent Fibroblast Growth Factor Receptor Inhibitors.

نویسندگان

  • Zhen Zhang
  • Dongmei Zhao
  • Yang Dai
  • Maosheng Cheng
  • Meiyu Geng
  • Jingkang Shen
  • Yuchi Ma
  • Jing Ai
  • Bing Xiong
چکیده

Tyrosine kinase fibroblast growth factor receptor (FGFR), which is aberrant in various cancer types, is a promising target for cancer therapy. Here we reported the design, synthesis, and biological evaluation of a new series of 6-(2,6-dichloro-3,5-dimethoxyphenyl)-4-substituted-1H-indazole derivatives as potent FGFR inhibitors. The compound 6-(2,6-dichloro-3,5-dimethoxyphenyl)-N-phenyl-1H-indazole-4-carboxamide (10a) was identified as a potent FGFR1 inhibitor, with good enzymatic inhibition. Further structure-based optimization revealed that 6-(2,6-dichloro-3,5-dimethoxyphenyl)-N-(3-(4-methylpiperazin-1-yl)phenyl)-1H-indazole-4-carboxamide (13a) is the most potent FGFR1 inhibitor in this series, with an enzyme inhibitory activity IC50 value of about 30.2 nM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-(3,5-Dimethoxyphenyl)-1,6-naphthyridine-2,7-diamines and related 2-urea derivatives are potent and selective inhibitors of the FGF receptor-1 tyrosine kinase.

A series of 3-aryl-1,6-naphthyridine-2,7-diamines and related 2-ureas were prepared and evaluated as inhibitors of the FGF receptor-1 tyrosine kinase. Condensation of 4,6-diaminonicotinaldehyde and substituted phenylacetonitriles gave intermediate naphthyridine-2,7-diamines, and direct reaction of the monoanion of these (NaH/DMF) with alkyl or aryl isocyanates selectively gave the 2-ureas in va...

متن کامل

Synthesis and biological evaluation of some novel 1,4-dihydropyridines as potential antitubercular agents.

Recent studies showed that 1,4-dihydropyridine-3,5-dicarbamoyl derivatives with lipophilic groups have significant antitubercular activity. In this study, we have synthesized new derivatives of 1,4-dihydropyridines bearing carbmethoxy and carbethoxy group at C-3 and C-5 of the 1,4-dihydropyridine ring. In addition, 1H-pyrazole ring is substituted at C-4 position. These analogues were synthesize...

متن کامل

Synthesis of N2-(substituted benzyl)-3-(4-methylphenyl)indazoles as novel anti-angiogenic agents.

To search for novel compounds with potent anti-angiogenic activity, a series of N(1)-(substituted benzyl)-3-(4-methylphenyl)-1H-indazoles (16, 18, 20, 22, 24, 26, 28, 30, 32) and N(2)-(substituted benzyl)-3-(4-methylphenyl)-2H-indazoles (17, 19, 21, 23, 25, 27, 29, 31, and 33) were synthesized. The structures of these regioisomers were established by IR, UV, and NMR spectral data. 3-(4-Methylph...

متن کامل

Design, Synthesis and Biological Evaluation of 5-Oxo-1,4,5,6,7,8 Hexahydroquinoline Derivatives as Selective Cyclooxygenase-2 Inhibitors

A group of regioisomeric 5-oxo-1,4,5,6,7,8 hexahydroquinoline derivatives possessing a COX-2 SO2Me pharmacophore at the para position of the C-2 or C-4 phenyl ring, in conjunction with a C-4 or C-2 phenyl (4-H) or substituted-phenyl ring (4-F,4-Cl,4-Br,4-OMe,4-Me, 4-NO2), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target 5-oxo-1,4,5,6,7,8 hexahydroquino...

متن کامل

Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase

Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2016